Consider the subgroup lattice of A_4.

Notice that the 3-subgroups of A_4 are $\langle 234 \rangle$, $\langle 134 \rangle$, $\langle 124 \rangle$, and $\langle 123 \rangle$. We can arrange these in **ascending chains**, for example,

$$\{1\} \subseteq \langle 234 \rangle \subseteq A_4$$

1. What are the 2-subgroups of A_4?

2. Arrange the 2-subgroups of A_4 in ascending chains.

Let G be a group with order $p^n \cdot n$, where $(p, n) = 1$ and p is a prime. We say that a maximal proper p-subgroup is a **Sylow p-subgroup** of G. Let n_p denote the number of Sylow p-subgroups of G.

3. Identify all the Sylow 2-subgroups and Sylow 3-subgroups of A_4.

4. Identify the Sylow 2-subgroups and Sylow 3-subgroups of the other groups of order 12.

5. For each group of order 12, could you say that there is a unique Sylow 2-subgroup? Sylow 3-subgroup?

6. For each group of order 12, what is the order of a Sylow 2-subgroup? Sylow 3-subgroup?

7. Calculate n_p, $p = 2, 3$ for the 5 groups of order 12. Then complete the following sentences:

Suppose $|G| = 12$.

(a) Then G has either ____________ or ____________ Sylow 3-subgroups, which are all of order ____________.

(b) Then G has either ____________ or ____________ Sylow 2-subgroups, which are all of order ____________.

8. You should not have any blanks filled in with the number 0 in problem 7. Do you think that, for some group of order other than 12, we could have $n_p = 0$? Justify your answer.
9. Let G be a group with order p^n, where $(p, n) = 1$. Write a conjecture that relates n_p, the number of Sylow p-subgroups of G, to $|G|$.

10. Write a conjecture about the Sylow p-subgroups of a group, if $n_p > 1$.

11. Write a conjecture about the unique Sylow p-subgroup of a group when $n_p = 1$.

12. Now consider the groups of order 6: \mathbb{Z}_6 and S_3. Do these groups satisfy your conjectures?
Lattice Diagrams of Remaining Groups of Order 12