In Lab 4, we computed cosets in various groups. The collection of cosets forms a new group precisely when the left and the right cosets agree. If the right and the left cosets are the same, then we can define a binary operation \(\# \) on the cosets:

\[
aH \# bH = (ab)H.
\]

The cosets together with this operation form another group.

Definition: If \(G \) is a group and \(H \) is a normal subgroup of \(G \), then the collection of cosets is called the **quotient** or **factor group**, and is denoted by \(G/H \).

Recall that \(|G : H| \) is the number of distinct cosets of \(H \) in \(G \). Thus the order of the group \(G/H \) is \(|G : H| \).

1. Consider the group \(S_3 \). Let \(H = \{\rho_0, \rho, \rho^2\} \). In Lab 4, we checked that the left and right cosets agree, so \(H \) is a normal subgroup of \(G \). Therefore we can form the quotient group \(G/H \). Construct a group table for the quotient group \(G/H \). What familiar group has the same group table?
2. Let’s now consider \mathbb{Z}_{12}. Set $H = \langle 4 \rangle = \{0, 4, 8\}$. We saw in lab 4 that H is a normal subgroup of G. Therefore we can form the quotient group G/H. Construct a group table for the quotient group G/H. What familiar group has the same group table?