1. (6) Let \(g(x) = x^2 + 1 \) on the interval \([0, 2]\).

 (a) Sketch the graph of \(g(x) \) and shade the region bounded by the graph of \(g \), the \(x \)-axis, and the vertical lines \(x = 0 \) and \(x = 2 \).

 (b) Compute \(R_4 \) for \(g(x) \) on \([0, 2]\). Use right endpoints for the calculation. Sketch the graph of \(g \) and the approximating rectangles.

 (c) Evaluate the integral using the definition of a definite integral.

2. (4) Let

\[
 f(x) = \begin{cases}
 \sqrt{16 - x^2} & \text{if } -4 \leq x < 0 \\
 4 & \text{if } 0 \leq x < 1 \\
 6 - 2x & \text{if } 1 \leq x \leq 4
\end{cases}
\]

Compute \(\int_{-4}^{4} f(x) \, dx \) by first sketching the graph of \(f \) and then interpreting the integral in terms of areas.